metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[*µ*-1,2-Bis(diphenylphosphino)ethane- $\kappa^2 P: P'$]bis{[1,2-bis(diphenylphosphino)ethane- $\kappa^2 P$, P']cyanidocopper(I) methanol disolvate

Rong Wang,^a Ye-Lan Xiao,^a Qiong-Hua Jin^{a*} and Cun-Lin Zhang^b

^aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and ^bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China Correspondence e-mail: jingh204@163.com

Received 5 July 2010; accepted 25 July 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.049; wR factor = 0.149; data-to-parameter ratio = 15.3.

The title centrosymmetric complex, $[Cu_2(CN)_2(C_{26}H_{24}P_2)_3]$. 2CH₃OH, consists of two five-membered [Cu(dppe)CN] rings [dppe is 1,2-bis(diphenylphosphino)ethane] bridged by one μ_2 -dppe ligand, and two methanol solvent molecules. The angles around the central metal atom indicate that each Cu^I atom is located in the center of a distorted tetrahedron. The coordination sphere of each Cu^I atom is formed by three P atoms from two dppe ligands, and one C atom from the cyanide ligand. The crystal structure is stabilized by $O-H \cdots N$ hydrogen bonds, which are formed by the O-H donor group from methanol and the N-atom acceptor from a cyanide ligand.

Related literature

For related structures, see: Jin et al. (2009); Effendy et al. (2006); Sivasankar et al. (2004); Di Nicola et al. (2006); Saravanabharathi et al. (2002). For general background to the photophysical properties of similar compounds, see: Cingolani et al. (2005); Song et al. (2007).

Experimental

Crystal data	
$[Cu_2(CN)_2(C_{26}H_{24}P_2)_3] \cdot 2CH_4O$	a = 23.423 (2) Å
$M_r = 1438.38$ Monoclinic, $C2/c$	b = 17.7912 (16) A c = 17.6614 (18) Å

$\beta = 92.194 \ (1)^{\circ}$
$V = 7354.6 (12) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.732, \ T_{\max} = 0.833$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 425 parameters $wR(F^2) = 0.149$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$ 6494 reflections

 $\mu = 0.76 \text{ mm}^{-1}$ T = 298 K

 $R_{\rm int} = 0.044$

 $0.44 \times 0.40 \times 0.25 \text{ mm}$

18242 measured reflections

6494 independent reflections

4140 reflections with $I > 2\sigma(I)$

Table 1		
Hydrogen-bond geometry	y (Å, °)	۱.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1 \cdots N1^i$	0.82	2.02	2.829 (11)	171
	. 1 . 1			

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Keystone Basic Research Program (973 Program - grant Nos. 2007CB310408 and 2006CB302901), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of the Beijing Municipality and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2196).

References

- Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cingolani, A., Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 748-762.
- Di Nicola, C., Koutsantonis, G. A., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 2159-2169.
- Effendy, Di Nicola, C., Pettinari, C., Pizzabiocca, A., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 64-80.
- Jin, Q. H., Chen, L. M., Li, P. Z., Deng, S. F. & Wang, R. (2009). Inorg. Chim. Acta, 362, 5224-5230.
- Saravanabharathi, D., Monika, Venugopalan, P. & Samuelson, A.G. (2002). Polyhedron, 21, 2433-2443.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). Inorg. Chim. Commun. 7. 238-240.
- Song, L., Lin, P., Li, Z. H., Li, J. R., Du, S. W. & Wu, X. T. (2007). Polyhedron, 26, 1199-1204.

Acta Cryst. (2010). E66, m1032 [doi:10.1107/S1600536810029545]

$[\mu$ -1,2-Bis(diphenylphosphino)ethane- $\kappa^2 P:P'$]bis{[1,2-bis(diphenylphosphino)ethane- $\kappa^2 P,P'$]cyanidocopper(I)} methanol disolvate

R. Wang, Y.-L. Xiao, Q.-H. Jin and C.-L. Zhang

Comment

Copper(I) complexes containing the diphosphine ligands bis(diphenylphosphinoethane)(Dppe) are extensively studied because of their interesting structures and photophysical properties (Cingolani *et al.*, 2005; Song *et al.*, 2007). dppe is a very efficient bridging bidentate ligand and its chelating tendency is very suitable to lock the metal atom. As a part of the extension of our study on the systematic structural chemistry of copper(I) complexes with ligands containing phosphine and nitrogen atoms (Jin *et al.*, 2009), we synthesized the new title complex, (1), in the presence of $(NH_4)_2WS_4$ and 1,10-phenanthroline.

The molecular structure of complex (1) is depicted in Fig. 1. It consists of two five-membered [Cu(dppe)CN] rings that are bridged by one μ_2 -dppe ligand, and two methanol solvent molecules. The copper atom is four-coordinated by three P-atoms from two dppe ligands, and one C-atom from the cyanide ion. The Cu—P distances of 2.2832 (12) Å, 2.3041 (13) Å and 2.3291 (12) Å are longer than those in complex [Cu₂(dppe)₃(CN)₂].2(CH₃CN) (2), which vary from 2.2784 (4) to 2.3158 (4) Å (Effendy *et al.*, 2006), but are almost equal to those in complex [Cu₂(dppe)₃(CN)₂] (3), which vary from 2.2808 (8) to 2.3276 (8) Å (Saravanabharathi *et al.*, 2002). The Cu—C distance of 1.952 (6)Å in complex (1) is shorter than the same distance observed in complexes (2) and (3); 1.975 (2) Å and 1.964 (4) Å, respectively.

In (1) the P—Cu—C angles are in the range 107.59 (14) - 119.11 (14)°, and the P—Cu—P angles are in the range 89.03 (4) - 115.07 (5)°. This confirms the distored tetrahedral environment around the copper(I) atom. These values are very close to those observed for complex (3), where the P—Cu—C angles range from 107.05 (9) to 120.73 (9)°, and the P—Cu—P angles are in the range 89.22 (3) - 115.16 (3) °.

Though both $(NH_4)_2WS_4$ and 1,10-phenanthroline were starting materials in the prepartion of (1), they do not appear in the final product. This may be related to the solvent methanol because the O—H donor from methanol can form an O—H···N hydrogen bond with the N atom from the cyanide anion (Table 1), and this can stablize the molecular structure of the complex.

The crystal structure of complex (1) is similar with that of complex (2). Other similar complexes are adducts CuX:dppe:*X*, where *X* is a simple inorganic anion, for example, a halide (Effendy *et al.*, 2006; Di Nicola *et al.*, 2006), thiocyanate (Saravanabharathi *et al.*, 2002), perchlorate (Sivasankar *et al.*, 2004; Jin *et al.*, 2009) and tetrafluoroborate (Jin *et al.*, 2009).

Experimental

A mixture of CuCN, bis(diphenylphosphinoethane), $(NH_4)_2WS_4$ and 1,10-Phenanthroline, in the molar ratio of 3:3:1:1 in CH₂Cl₂ and MeOH (10 ml,V/V=1/1), was stirred for 4 h at RT, then filtered. Subsequent slow evaporation of the filtrate

resulted in the formation of yellow crystals of complex (1). Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H 0.93 - 0.96 Å with $U_{iso}(H) = k \times U_{eq}(\text{parent O or C-atom})$, where k = 1.5 for OH and CH₃ H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1. A view of the molecular structure of complex (1), with the displacement ellipsoids drawn at the 50% probability level [Symmetry code: (i) = -x+1/2, -y+1/2, -z+1; Hydrogen atoms have been omitted for clarity].

$[\mu-1,2-Bis(diphenylphosphino)ethane-\kappa^2 P:P']bis{[1,2-bis(diphenylphosphino)ethane-\kappa^2 P,P']cyanidocopper(I)} methanol disolvate$

Crystal data

$[Cu_2(CN)_2(C_{26}H_{24}P_2)_3]$ ·2CH ₄ O	F(000) = 3000
$M_r = 1438.38$	$D_{\rm x} = 1.299 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 4634 reflections
a = 23.423 (2) Å	$\theta = 2.3 - 27.3^{\circ}$
<i>b</i> = 17.7912 (16) Å	$\mu = 0.76 \text{ mm}^{-1}$
c = 17.6614 (18) Å	T = 298 K
$\beta = 92.194 \ (1)^{\circ}$	Block, yellow
$V = 7354.6 (12) \text{ Å}^3$	$0.44 \times 0.40 \times 0.25 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	6494 independent reflections
Radiation source: fine-focus sealed tube	4140 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.044$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -23 \rightarrow 27$
$T_{\min} = 0.732, \ T_{\max} = 0.833$	$k = -21 \rightarrow 21$
18242 measured reflections	$l = -17 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.149$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_0^2) + (0.063P)^2 + 16.0608P]$ where $P = (F_0^2 + 2F_c^2)/3$
6494 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
425 parameters	$\Delta \rho_{max} = 0.63 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.26534 (2)	0.24069 (3)	0.29813 (3)	0.03662 (18)
N1	0.3058 (2)	0.4054 (3)	0.3181 (3)	0.0646 (13)
01	0.0834 (4)	0.0342 (6)	0.6565 (6)	0.243 (5)
H1	0.1155	0.0494	0.6686	0.292*
P1	0.28874 (4)	0.17964 (6)	0.40872 (6)	0.0305 (3)
P2	0.30147 (5)	0.18670 (7)	0.18979 (7)	0.0372 (3)
P3	0.17430 (5)	0.21480 (7)	0.25132 (7)	0.0379 (3)
C1	0.2892 (2)	0.3452 (3)	0.3102 (3)	0.0437 (11)
C2	0.28034 (17)	0.2350 (2)	0.4956 (2)	0.0332 (10)
H2A	0.2907	0.2038	0.5391	0.040*
H2B	0.3066	0.2771	0.4954	0.040*
C3	0.25244 (17)	0.0913 (2)	0.4259 (2)	0.0328 (10)
C4	0.2433 (2)	0.0433 (3)	0.3649 (3)	0.0463 (12)
H4	0.2558	0.0573	0.3175	0.056*
C5	0.2161 (2)	-0.0251 (3)	0.3731 (3)	0.0608 (15)
Н5	0.2103	-0.0566	0.3315	0.073*
C6	0.1977 (2)	-0.0462 (3)	0.4427 (4)	0.0640 (15)
H6	0.1798	-0.0924	0.4486	0.077*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C7	0.2057 (2)	0.0011 (3)	0.5039 (3)	0.0594 (14)
H7	0.1926	-0.0126	0.5510	0.071*
C8	0.2332 (2)	0.0687 (3)	0.4953 (3)	0.0460 (12)
H8	0.2389	0.0999	0.5372	0.055*
C9	0.36466 (17)	0.1560 (2)	0.4211 (2)	0.0359 (10)
C10	0.4037 (2)	0.1964 (3)	0.3819 (3)	0.0572 (14)
H10	0.3912	0.2327	0.3472	0.069*
C11	0.4621 (2)	0.1835 (4)	0.3935 (4)	0.0745 (18)
H11	0.4882	0.2116	0.3670	0.089*
C12	0.4810 (2)	0.1305 (4)	0.4432 (3)	0.0676 (17)
H12	0.5200	0.1215	0.4501	0.081*
C13	0.4429 (2)	0.0898 (3)	0.4834 (3)	0.0628 (15)
H13	0.4559	0.0538	0.5181	0.075*
C14	0.3848 (2)	0.1026 (3)	0.4721 (3)	0.0504 (13)
H14	0.3590	0.0747	0.4993	0.060*
C15	0.23651 (19)	0.1723 (3)	0.1290 (3)	0.0456 (12)
H15A	0.2270	0.2188	0.1028	0.055*
H15B	0.2441	0.1345	0.0912	0.055*
C16	0.18567 (19)	0.1475 (3)	0.1747 (3)	0.0438 (11)
H16A	0.1929	0.0979	0.1958	0.053*
H16B	0.1516	0.1447	0.1417	0.053*
C17	0.33868 (19)	0.0963 (3)	0.1854 (2)	0.0412 (11)
C18	0.3107 (2)	0.0287 (3)	0.1734 (3)	0.0490 (12)
H18	0.2711	0.0283	0.1672	0.059*
C19	0.3406 (2)	-0.0385 (3)	0.1706 (3)	0.0584 (14)
H19	0.3209	-0.0833	0.1623	0.070*
C20	0.3982 (3)	-0.0392(3)	0.1797 (3)	0.0651 (16)
H20	0.4181	-0.0844	0.1777	0.078*
C21	0.4273 (2)	0.0267 (4)	0.1920 (4)	0.0714 (17)
H21	0.4670	0.0264	0.1980	0.086*
C22	0.3977 (2)	0.0938 (3)	0.1953 (3)	0.0593 (14)
H22	0.4177	0.1382	0.2045	0.071*
C23	0.3481 (2)	0.2435 (3)	0.1316 (3)	0.0455 (12)
C24	0.3554 (2)	0.2283 (3)	0.0564 (3)	0.0606 (14)
H24	0.3343	0.1901	0.0328	0.073*
C25	0.3935 (3)	0.2691 (4)	0.0156 (4)	0.0784 (19)
H25	0.3973	0.2592	-0.0357	0.094*
C26	0.4252 (3)	0.3234 (4)	0.0498 (4)	0.082 (2)
H26	0.4515	0.3501	0.0222	0.099*
C27	0.4192 (2)	0.3396 (3)	0.1245 (4)	0.0757 (18)
H27	0.4411	0.3772	0.1478	0.091*
C28	0.3801 (2)	0.2995 (3)	0.1655 (3)	0.0556 (14)
H28	0.3755	0.3106	0.2164	0.067*
C29	0.11966 (19)	0.1722 (3)	0.3079 (3)	0.0464 (12)
C30	0.0944 (3)	0.1036 (3)	0.2908 (4)	0.0761 (18)
H30	0.1061	0.0757	0.2496	0.091*
C31	0.0515 (3)	0.0769 (4)	0.3358 (5)	0.101 (2)
H31	0.0338	0.0313	0.3240	0.122*
C32	0.0350 (3)	0.1166 (4)	0.3970 (4)	0.098 (2)

H32	0.0069	0.0974	0.4274	0.117*
C33	0.0592 (3)	0.1842 (4)	0.4141 (4)	0.084 (2)
H33	0.0473	0.2115	0.4555	0.101*
C34	0.1015 (2)	0.2122 (3)	0.3699 (3)	0.0597 (14)
H34	0.1180	0.2584	0.3817	0.072*
C35	0.13433 (19)	0.2891 (3)	0.2004 (3)	0.0423 (11)
C36	0.1637 (2)	0.3484 (3)	0.1707 (3)	0.0548 (13)
H36	0.2032	0.3509	0.1779	0.066*
C37	0.1351 (3)	0.4045 (3)	0.1302 (3)	0.0707 (17)
H37	0.1554	0.4440	0.1096	0.085*
C38	0.0765 (3)	0.4017 (3)	0.1204 (3)	0.0716 (17)
H38	0.0573	0.4398	0.0940	0.086*
C39	0.0469 (2)	0.3436 (3)	0.1492 (3)	0.0648 (16)
H39	0.0073	0.3419	0.1419	0.078*
C40	0.0750 (2)	0.2864 (3)	0.1895 (3)	0.0530 (13)
H40	0.0544	0.2467	0.2090	0.064*
C41	0.0678 (5)	0.0611 (8)	0.5868 (8)	0.200 (6)
H41A	0.0315	0.0859	0.5890	0.300*
H41B	0.0648	0.0202	0.5514	0.300*
H41C	0.0960	0.0961	0.5707	0.300*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0365 (3)	0.0446 (3)	0.0287 (3)	0.0026 (2)	0.0002 (2)	0.0009 (2)
N1	0.084 (4)	0.054 (3)	0.057 (3)	-0.012 (3)	0.006 (2)	-0.007 (2)
O1	0.204 (9)	0.280 (12)	0.241 (12)	-0.122 (8)	-0.036 (8)	0.110 (9)
P1	0.0297 (6)	0.0359 (6)	0.0260 (6)	0.0033 (5)	0.0006 (4)	-0.0011 (5)
P2	0.0374 (7)	0.0460 (7)	0.0284 (6)	0.0033 (5)	0.0041 (5)	-0.0016 (5)
P3	0.0319 (6)	0.0469 (7)	0.0346 (7)	0.0047 (5)	-0.0016 (5)	-0.0020 (5)
C1	0.045 (3)	0.057 (3)	0.029 (3)	0.005 (2)	0.003 (2)	0.003 (2)
C2	0.036 (2)	0.036 (2)	0.027 (2)	0.0024 (19)	-0.0035 (18)	-0.0043 (18)
C3	0.031 (2)	0.040 (2)	0.028 (2)	0.0052 (18)	-0.0047 (18)	-0.0014 (19)
C4	0.054 (3)	0.051 (3)	0.034 (3)	0.002 (2)	0.001 (2)	0.000 (2)
C5	0.074 (4)	0.052 (3)	0.056 (4)	-0.009 (3)	-0.010 (3)	-0.014 (3)
C6	0.068 (4)	0.049 (3)	0.075 (4)	-0.012 (3)	-0.005 (3)	0.006 (3)
C7	0.073 (4)	0.053 (3)	0.053 (4)	-0.007 (3)	0.009 (3)	0.012 (3)
C8	0.057 (3)	0.044 (3)	0.037 (3)	-0.004 (2)	0.003 (2)	-0.002 (2)
C9	0.031 (2)	0.045 (3)	0.032 (2)	0.006 (2)	0.0013 (19)	-0.008 (2)
C10	0.041 (3)	0.078 (4)	0.053 (3)	0.000 (3)	0.001 (2)	0.009 (3)
C11	0.043 (3)	0.108 (5)	0.073 (4)	-0.015 (3)	0.009 (3)	0.004 (4)
C12	0.036 (3)	0.098 (5)	0.067 (4)	0.012 (3)	-0.005 (3)	-0.013 (4)
C13	0.049 (3)	0.078 (4)	0.060 (4)	0.019 (3)	-0.014 (3)	-0.002 (3)
C14	0.040 (3)	0.058 (3)	0.052 (3)	0.007 (2)	-0.004 (2)	0.002 (3)
C15	0.051 (3)	0.052 (3)	0.034 (3)	0.011 (2)	-0.006 (2)	-0.008 (2)
C16	0.040 (3)	0.049 (3)	0.042 (3)	0.007 (2)	-0.002 (2)	-0.007 (2)
C17	0.042 (3)	0.053 (3)	0.029 (3)	0.007 (2)	0.003 (2)	-0.001 (2)
C18	0.045 (3)	0.057 (3)	0.046 (3)	0.009 (2)	0.006 (2)	-0.001 (2)

C19	0.063 (4)	0.052 (3)	0.061 (4)	0.006 (3)	0.003 (3)	-0.002 (3)
C20	0.066 (4)	0.062 (4)	0.068 (4)	0.022 (3)	0.005 (3)	0.007 (3)
C21	0.048 (3)	0.087 (5)	0.079 (5)	0.020 (3)	-0.001 (3)	0.008 (4)
C22	0.049 (3)	0.062 (4)	0.066 (4)	0.005 (3)	-0.002 (3)	0.003 (3)
C23	0.048 (3)	0.051 (3)	0.039 (3)	0.013 (2)	0.012 (2)	0.006 (2)
C24	0.068 (4)	0.070 (4)	0.045 (3)	0.009 (3)	0.014 (3)	0.007 (3)
C25	0.083 (5)	0.097 (5)	0.058 (4)	0.020 (4)	0.032 (3)	0.018 (4)
C26	0.075 (5)	0.084 (5)	0.091 (5)	0.007 (4)	0.043 (4)	0.032 (4)
C27	0.065 (4)	0.069 (4)	0.095 (5)	-0.005 (3)	0.025 (4)	0.010 (4)
C28	0.056 (3)	0.061 (3)	0.051 (3)	-0.001 (3)	0.017 (3)	0.005 (3)
C29	0.038 (3)	0.052 (3)	0.049 (3)	0.006 (2)	0.000 (2)	0.001 (2)
C30	0.070 (4)	0.074 (4)	0.086 (5)	-0.009 (3)	0.030 (4)	-0.008 (4)
C31	0.105 (6)	0.086 (5)	0.117 (7)	-0.027 (4)	0.046 (5)	-0.007 (5)
C32	0.094 (5)	0.106 (6)	0.097 (6)	-0.017 (5)	0.049 (4)	0.000 (5)
C33	0.076 (4)	0.107 (6)	0.072 (5)	-0.001 (4)	0.027 (4)	-0.006 (4)
C34	0.054 (3)	0.075 (4)	0.051 (3)	-0.004 (3)	0.007 (3)	-0.005 (3)
C35	0.042 (3)	0.047 (3)	0.037 (3)	0.007 (2)	-0.006 (2)	-0.007 (2)
C36	0.050 (3)	0.060 (3)	0.053 (3)	0.002 (3)	-0.011 (3)	0.003 (3)
C37	0.075 (4)	0.064 (4)	0.071 (4)	-0.004 (3)	-0.020 (3)	0.015 (3)
C38	0.075 (4)	0.069 (4)	0.069 (4)	0.019 (3)	-0.026 (3)	0.009 (3)
C39	0.048 (3)	0.077 (4)	0.068 (4)	0.018 (3)	-0.015 (3)	0.003 (3)
C40	0.044 (3)	0.062 (3)	0.052 (3)	0.006 (3)	-0.007 (2)	-0.001 (3)
C41	0.166 (12)	0.229 (14)	0.204 (16)	-0.004 (10)	-0.006 (10)	0.052 (12)

Geometric parameters (Å, °)

1.951 (6)	C17—C22	1.387 (6)
2.2832 (12)	C18—C19	1.388 (6)
2.3041 (13)	C18—H18	0.9300
2.3291 (12)	C19—C20	1.355 (7)
1.146 (6)	С19—Н19	0.9300
1.358 (12)	C20—C21	1.370 (8)
0.8200	C20—H20	0.9300
1.818 (4)	C21—C22	1.383 (7)
1.832 (4)	C21—H21	0.9300
1.840 (4)	C22—H22	0.9300
1.832 (5)	C23—C28	1.370 (7)
1.833 (5)	C23—C24	1.372 (7)
1.846 (5)	C24—C25	1.375 (8)
1.818 (5)	C24—H24	0.9300
1.835 (5)	C25—C26	1.348 (9)
1.835 (5)	C25—H25	0.9300
1.532 (8)	C26—C27	1.363 (9)
0.9700	C26—H26	0.9300
0.9700	C27—C28	1.387 (7)
1.382 (6)	С27—Н27	0.9300
1.386 (6)	C28—H28	0.9300
1.384 (7)	C29—C30	1.384 (7)
0.9300	C29—C34	1.386 (7)
	1.951 (6) $2.2832 (12)$ $2.3041 (13)$ $2.3291 (12)$ $1.146 (6)$ $1.358 (12)$ 0.8200 $1.818 (4)$ $1.832 (4)$ $1.832 (4)$ $1.840 (4)$ $1.832 (5)$ $1.833 (5)$ $1.846 (5)$ $1.818 (5)$ $1.835 (5)$ $1.835 (5)$ $1.532 (8)$ 0.9700 0.9700 $1.382 (6)$ $1.384 (7)$ 0.9300	1.951(6) $C17-C22$ $2.2832(12)$ $C18-C19$ $2.3041(13)$ $C18-H18$ $2.3291(12)$ $C19-C20$ $1.146(6)$ $C19-H19$ $1.358(12)$ $C20-C21$ 0.8200 $C20-H20$ $1.818(4)$ $C21-C22$ $1.832(4)$ $C21-H21$ $1.840(4)$ $C22-H22$ $1.832(5)$ $C23-C28$ $1.833(5)$ $C23-C24$ $1.846(5)$ $C24-H24$ $1.835(5)$ $C25-C26$ $1.835(5)$ $C25-C26$ $1.835(5)$ $C26-C27$ 0.9700 $C26-H26$ 0.9700 $C27-C28$ $1.382(6)$ $C27-H27$ $1.386(6)$ $C28-H28$ $1.384(7)$ $C29-C30$ 0.9300 $C29-C34$

C5—C6	1.371 (7)	C30—C31	1.391 (8)
С5—Н5	0.9300	С30—Н30	0.9300
C6—C7	1.378 (7)	C31—C32	1.360 (9)
С6—Н6	0.9300	C31—H31	0.9300
С7—С8	1.375 (7)	C32—C33	1.358 (9)
С7—Н7	0.9300	С32—Н32	0.9300
С8—Н8	0.9300	C33—C34	1.377 (8)
C9—C10	1.372 (6)	С33—Н33	0.9300
C9—C14	1.381 (6)	C34—H34	0.9300
C10-C11	1.394 (7)	C35—C36	1.374 (7)
C10—H10	0.9300	C35—C40	1.396 (6)
C11—C12	1.352 (8)	C36—C37	1.387 (7)
C11—H11	0.9300	С36—Н36	0.9300
C12—C13	1.368 (8)	C37—C38	1.376 (8)
C12—H12	0.9300	С37—Н37	0.9300
C13—C14	1.387 (6)	C38—C39	1.355 (8)
С13—Н13	0.9300	C38—H38	0.9300
C14—H14	0.9300	C39—C40	1.393 (7)
C15—C16	1.529 (6)	С39—Н39	0.9300
C15—H15A	0.9700	C40—H40	0.9300
C15—H15B	0.9700	C41—H41A	0.9600
C16—H16A	0.9700	C41—H41B	0.9600
C16—H16B	0.9700	C41—H41C	0.9600
C17—C18	1.381 (6)		
C1—Cu1—P1	107.59 (14)	H16A—C16—H16B	108.2
C1—Cu1—P3	119.11 (14)	C18—C17—C22	117.1 (4)
P1—Cu1—P3	113.60 (5)	C18—C17—P2	123.1 (4)
C1—Cu1—P2	111.79 (14)	C22—C17—P2	119.7 (4)
P1—Cu1—P2	115.07 (5)	C17—C18—C19	121.2 (5)
P3—Cu1—P2	89.03 (4)	C17—C18—H18	119.4
C41—O1—H1	109.5	C19—C18—H18	119.4
C3—P1—C9	103.88 (19)	C20—C19—C18	120.4 (5)
C3—P1—C2	104.93 (19)	C20—C19—H19	119.8
C9—P1—C2	99.06 (18)	С18—С19—Н19	119.8
C3—P1—Cu1	117.12 (14)	C19—C20—C21	119.9 (5)
C9—P1—Cu1	114.28 (15)	C19—C20—H20	120.1
C2—P1—Cu1	115.39 (14)	C21—C20—H20	120.1
C17—P2—C23	99.5 (2)	C20—C21—C22	119.9 (5)
C17—P2—C15	103.7 (2)	C20—C21—H21	120.1
C23—P2—C15	104.3 (2)	C22—C21—H21	120.1
C17—P2—Cu1	125.84 (15)	C21—C22—C17	121.5 (5)
C23—P2—Cu1	118.46 (16)	C21—C22—H22	119.3
C15—P2—Cu1	102.56 (15)	C17—C22—H22	119.3
C29—P3—C16	105.0 (2)	C28—C23—C24	118.8 (5)
C29—P3—C35	102.3 (2)	C28—C23—P2	118.9 (4)
C16—P3—C35	101.2 (2)	C24—C23—P2	122.2 (4)
C29—P3—Cu1	123.19 (17)	C23—C24—C25	120.7 (6)
C16—P3—Cu1	103.70 (15)	C23—C24—H24	119.7
C35—P3—Cu1	118.66 (16)	C25—C24—H24	119.7

N1—C1—Cu1	176.6 (5)	C26—C25—C24	120.1 (6)
C2 ⁱ —C2—P1	113.6 (4)	C26—C25—H25	120.0
C2 ⁱ —C2—H2A	108.8	C24—C25—H25	120.0
P1—C2—H2A	108.8	C25—C26—C27	120.6 (6)
$C2^{i}$ — $C2$ — $H2B$	108.8	C25—C26—H26	119.7
P1—C2—H2B	108.8	C27—C26—H26	119 7
$H^2A - C^2 - H^2B$	107.7	C26—C27—C28	119.5 (6)
C8—C3—C4	117.7 (4)	С26—С27—Н27	120.2
C8—C3—P1	124.8 (3)	С28—С27—Н27	120.2
C4—C3—P1	117.5 (3)	C23—C28—C27	120.4 (6)
C5—C4—C3	121.2 (5)	C23—C28—H28	119.8
С5—С4—Н4	119.4	C27—C28—H28	119.8
С3—С4—Н4	119.4	C30—C29—C34	118.9 (5)
C6—C5—C4	119.9 (5)	C30—C29—P3	123.5 (4)
С6—С5—Н5	120.1	C34—C29—P3	117.6 (4)
С4—С5—Н5	120.1	C29—C30—C31	119.3 (6)
C5—C6—C7	119.8 (5)	С29—С30—Н30	120.3
С5—С6—Н6	120.1	С31—С30—Н30	120.3
С7—С6—Н6	120.1	C32—C31—C30	120.7 (7)
C8—C7—C6	119.9 (5)	C32—C31—H31	119.7
С8—С7—Н7	120.1	C30—C31—H31	119.7
С6—С7—Н7	120.1	C33—C32—C31	120.5 (6)
C7—C8—C3	121.5 (5)	С33—С32—Н32	119.7
С7—С8—Н8	119.2	С31—С32—Н32	119.7
С3—С8—Н8	119.2	C32—C33—C34	119.8 (6)
C10—C9—C14	118.2 (4)	С32—С33—Н33	120.1
C10—C9—P1	118.9 (4)	С34—С33—Н33	120.1
C14—C9—P1	122.8 (3)	C33—C34—C29	120.8 (6)
C9—C10—C11	120.6 (5)	С33—С34—Н34	119.6
C9—C10—H10	119.7	С29—С34—Н34	119.6
C11—C10—H10	119.7	C36—C35—C40	118.9 (4)
C12—C11—C10	120.4 (5)	C36—C35—P3	119.1 (4)
C12—C11—H11	119.8	C40—C35—P3	122.0 (4)
C10—C11—H11	119.8	C35—C36—C37	120.6 (5)
C11—C12—C13	120.1 (5)	С35—С36—Н36	119.7
C11—C12—H12	120.0	С37—С36—Н36	119.7
C13—C12—H12	120.0	C38—C37—C36	119.9 (6)
C12—C13—C14	119.7 (5)	С38—С37—Н37	120.0
C12—C13—H13	120.1	С36—С37—Н37	120.0
C14—C13—H13	120.1	C39—C38—C37	120.3 (5)
C9—C14—C13	121.0 (5)	С39—С38—Н38	119.9
C9—C14—H14	119.5	С37—С38—Н38	119.9
C13—C14—H14	119.5	C38—C39—C40	120.6 (5)
C16—C15—P2	112.0 (3)	С38—С39—Н39	119.7
С16—С15—Н15А	109.2	C40—C39—H39	119.7
P2—C15—H15A	109.2	C39—C40—C35	119.7 (5)
C16—C15—H15B	109.2	C39—C40—H40	120.2
P2—C15—H15B	109.2	C35—C40—H40	120.2

H15A—C15—H15B	107.9	O1—C41—H41A	109.5
C15—C16—P3	109.8 (3)	O1—C41—H41B	109.5
C15-C16-H16A	109.7	H41A—C41—H41B	109.5
P3—C16—H16A	109.7	O1—C41—H41C	109.5
C15-C16-H16B	109.7	H41A—C41—H41C	109.5
Р3—С16—Н16В	109.7	H41B—C41—H41C	109.5
C1—Cu1—P1—C3	160.9 (2)	P2-C15-C16-P3	54.5 (4)
P3—Cu1—P1—C3	26.84 (16)	C29—P3—C16—C15	-172.6 (3)
P2—Cu1—P1—C3	-73.77 (16)	C35—P3—C16—C15	81.3 (3)
C1—Cu1—P1—C9	-77.3 (2)	Cu1—P3—C16—C15	-42.1 (3)
P3—Cu1—P1—C9	148.63 (15)	C23—P2—C17—C18	-135.9 (4)
P2—Cu1—P1—C9	48.02 (16)	C15—P2—C17—C18	-28.6 (4)
C1—Cu1—P1—C2	36.6 (2)	Cu1—P2—C17—C18	88.2 (4)
P3—Cu1—P1—C2	-97.46 (15)	C23—P2—C17—C22	45.0 (4)
P2—Cu1—P1—C2	161.93 (15)	C15—P2—C17—C22	152.3 (4)
C1—Cu1—P2—C17	130.6 (2)	Cu1—P2—C17—C22	-90.8 (4)
P1—Cu1—P2—C17	7.5 (2)	C22—C17—C18—C19	-0.9 (7)
P3—Cu1—P2—C17	-108.3(2)	P2-C17-C18-C19	-179.9 (4)
C1—Cu1—P2—C23	2.0 (2)	C17—C18—C19—C20	0.2 (8)
P1—Cu1—P2—C23	-121.14(18)	C18—C19—C20—C21	0.1 (9)
P3—Cu1—P2—C23	123 13 (18)	$C_{19} - C_{20} - C_{21} - C_{22}$	03(9)
C1-Cu1-P2-C15	-1121(2)	$C_{20} - C_{21} - C_{22} - C_{17}$	-11(9)
P1-Cu1-P2-C15	124 81 (16)	$C_{18} - C_{17} - C_{22} - C_{21}$	13(8)
$P_3 = C_{11} = P_2 = C_{15}$	9.07 (16)	$P_2 = C_1 T_2 = C_2 C_2 T_2$	-179.6(4)
C1 - Cu1 - P3 - C29	-112 1 (2)	$C_{17} = P_{2} = C_{23} = C_{28}$	-1120(4)
P1 - Cu1 - P3 - C29	162(2)	C_{15} P_{2} C_{23} C_{23} C_{23} C_{28}	141 1 (4)
$P_2 = C_{11} = P_3 = C_{29}$	1333(2)	$C_{11} = P_{2} = C_{23} = C_{28}$	280(4)
C1 - Cu1 - P3 - C16	139.5(2) 129.4(2)	$C17_P2_C23_C24$	23.0(4)
P1 - Cu1 - P3 - C16	-102.25(17)	$C_{17} = 12 = C_{23} = C_{24}$	-43.9(5)
P_{2}^{-} C_{11}^{-} P_{2}^{-} C_{16}^{-}	102.23(17)	$C_{13} = 12 = C_{23} = C_{24}$	-157.0(4)
12 - cu1 - 13 - c10	14.02(17) 18.2(2)	$C_{11} = 12 = C_{23} = C_{24}$	-0.8(8)
$P_1 = C_{11} = P_2 = C_{25}$	10.2(2)	$P_2 = C_2^3 = C_2^4 = C_2^5$	-175.8(4)
P2—Cu1—P3—C35	-96.37(17)	$C_{23} - C_{24} - C_{25} - C_{26}$	1.7 (9)
C_{3} P1 - C_{2} - C_{2}^{i}	-72.9 (4)	C24—C25—C26—C27	-1.4 (10)
$C9-P1-C2-C2^{i}$	-180.0 (4)	C25—C26—C27—C28	0.3 (10)
$Cu1 - P1 - C2 - C2^{i}$	57.6 (4)	C24—C23—C28—C27	-0.3 (8)
C9 - P1 - C3 - C8	92.8 (4)	P2-C23-C28-C27	174 8 (4)
$C_2 = P_1 = C_3 = C_8$	-10.7(4)	$C_{26} = C_{27} = C_{28} = C_{23}$	0.6.(9)
C_{11} = P1 = C3 = C8	-1402(3)	$C_{16} = P_{3} = C_{29} = C_{30}$	-0.7(5)
C9 - P1 - C3 - C4	-874(4)	C_{35} P_{3} C_{29} C_{30}	104.6(5)
$C_2 = P_1 = C_3 = C_4$	169 1 (3)	Cu1 - P3 - C29 - C30	-1186(5)
Cu1 - P1 - C3 - C4	39.7 (4)	C_{16} P_{3} C_{29} C_{34}	-1787(4)
C8-C3-C4-C5	-0.2(7)	C_{35} P_{3} C_{29} C_{34}	-73.4 (4)
P1-C3-C4-C5	179.9(4)	Cu1 - P3 - C29 - C34	63 4 (4)
C_{3} C_{4} C_{5} C_{6}	-01(8)	C_{34} C_{29} C_{30} C_{31}	03(9)
C_{4} C_{5} C_{6} C_{7}	0.9 (8)	P3	-177.6(5)
$C_{5} - C_{6} - C_{7} - C_{8}$	-1 3 (8)	C_{29} C_{30} C_{31} C_{32}	-1.3(12)
$C_{6} = C_{7} = C_{8} = C_{3}$	1.0 (8)	(30-(31-(32-(33	1.5(12) 1.7(13)
0 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1.0 (0)	0.50 -0.51-0.52-0.55	1.7 (13)

C4—C3—C8—C7	-0.2 (7)	C31—C32—C33—C34	-1.0 (12)	
P1—C3—C8—C7	179.6 (4)	C32—C33—C34—C29	0.0 (10)	
C3—P1—C9—C10	151.4 (4)	C30—C29—C34—C33	0.3 (9)	
C2—P1—C9—C10	-100.6 (4)	P3—C29—C34—C33	178.4 (5)	
Cu1—P1—C9—C10	22.6 (4)	C29—P3—C35—C36	159.4 (4)	
C3—P1—C9—C14	-33.0 (4)	C16—P3—C35—C36	-92.4 (4)	
C2—P1—C9—C14	74.9 (4)	Cu1—P3—C35—C36	20.2 (4)	
Cu1—P1—C9—C14	-161.8 (3)	C29—P3—C35—C40	-22.0 (4)	
C14-C9-C10-C11	0.0 (8)	C16—P3—C35—C40	86.2 (4)	
P1-C9-C10-C11	175.7 (4)	Cu1—P3—C35—C40	-161.3 (3)	
C9-C10-C11-C12	0.6 (9)	C40—C35—C36—C37	-0.3 (8)	
C10-C11-C12-C13	-1.1 (9)	P3—C35—C36—C37	178.3 (4)	
C11—C12—C13—C14	1.0 (9)	C35—C36—C37—C38	1.0 (9)	
C10-C9-C14-C13	-0.1 (7)	C36—C37—C38—C39	-1.1 (9)	
P1-C9-C14-C13	-175.7 (4)	C37—C38—C39—C40	0.6 (9)	
C12—C13—C14—C9	-0.4 (8)	C38—C39—C40—C35	0.1 (8)	
C17—P2—C15—C16	93.9 (3)	C36—C35—C40—C39	-0.2 (7)	
C23—P2—C15—C16	-162.3 (3)	P3—C35—C40—C39	-178.8 (4)	
Cu1—P2—C15—C16	-38.3 (3)			
Symmetry codes: (i) $-x+1/2$, $-y+1/2$, $-z+1$.				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1···N1 ⁱ	0.82	2.02	2.829 (11)	171
Symmetry codes: (i) $-x+1/2$, $-y+1/2$, $-z+1$.				

